Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Applied Technology Review
The Future of Tech: Haptics at the Forefront of Innovation
Haptics can enhance the realism of medical training and simulations, improve remote collaboration and communication, and boost art and creativity.
By
Applied Technology Review | Wednesday, June 04, 2025
Stay ahead of the industry with exclusive feature stories on
the top companies, expert insights and the latest news delivered straight to your
inbox. Subscribe today.
FREMONT, CA: Haptic technology has rapidly advanced, improving feedback precision and realism. By improving training and research simulations, it has influenced hundreds of companies and enterprises.
While haptics are most commonly employed in business-to-business situations, they can potentially change people's lives, particularly through Virtual Reality (VR). Haptic gloves, vests, and bodysuits with actuators and sensors can recreate the experience of touching virtual objects, increasing immersion and realism.
Impact of haptics on our lives
Medical training and simulation: Haptic feedback devices can reproduce the sensations of resistance and pulsation, providing medical students and professionals with a more realistic simulation experience. This technology enables trainees to rehearse sensitive procedures, which speeds up the learning process and improves patient safety.
Training and skill development for different industries: From manufacturing to construction, haptic feedback can improve training programs by imitating real-world events and offering tactile help for learning new skills. Haptics improves muscle memory, allowing trainees to move directly from virtual training programs to real-world circumstances.
Accessibility and remote work: Haptic technology plays an important role in improving remote work. By providing tactile feedback, haptics enable operators to do difficult operations with accuracy and control from a safe distance, notably in fields such as robotics.
Rehabilitation and physical therapy: Haptic feedback devices can help in rehabilitation programs by providing real-time feedback and guidance to patients during exercises, allowing them to regain strength, mobility, and coordination.
Art and creativity: Haptics could allow artists and designers to produce digital artwork or sculptures that mimic the tactile sensation of manipulating traditional materials such as clay, paint, or wood. This could open up new creative opportunities and bridge the gap between traditional craftsmanship and digital media.
Remote collaboration and communication: Haptic technology may enable more realistic remote collaboration by allowing users to physically sense the presence and actions of others in virtual meetings and shared spaces. For example, it would enable doctors to provide their expertise and treatment to patients in remote locations or during emergencies.
Sports training and performance: Haptic feedback devices can provide athletes with real-time biomechanical input during training sessions, allowing them to improve their actions and avoid injuries. Haptic sensors, for example, may detect minor changes in body posture or technique and send moderate sensations to athletes to help them move more efficiently and safely. This increases their overall athletic performance.