Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Applied Technology Review
Integrating haptics into devices can increase production costs, limiting their accessibility.
By
Applied Technology Review | Monday, August 18, 2025
Stay ahead of the industry with exclusive feature stories on
the top companies, expert insights and the latest news delivered straight to your
inbox. Subscribe today.
Fremont, CA: Haptic feedback technology is an advancement that marks the future of a new revolution in user interaction as it gives what they feel: a virtual sense of touch. Every industry has come to embrace it, especially with regard to revolutionizing human interaction vis-a-vis machines and virtual environments. They convey mechanical forces, vibrations, or motions to the skin while replicating touch sensations by different frequencies or pressures.
Advanced haptic systems also integrate sensors that detect user interactions, such as pressure or movement, to provide real-time feedback and create a more immersive experience. Smartphones and tablets use haptic feedback to enhance user interfaces, offering tactile responses for on-screen buttons, notifications, and typing. It improves usability and accessibility, especially for visually impaired users who rely on touch-based cues. Gaming controllers with haptic motors deliver precise vibrations to simulate in-game actions like explosions, vehicle movements, or weapon recoil, immersing players in the virtual world.
Haptic technology plays a pivotal role in creating lifelike simulations. Haptic gloves, suits, and controllers allow users to feel virtual objects, textures, and forces, enhancing the realism of VR experiences. For example, a user in a VR environment can feel the weight of a virtual object or the texture of a surface, making training simulations, gaming, and design more intuitive and engaging. It has vast implications for industries like healthcare, where VR simulations with haptic feedback train surgeons by replicating the sensation of operating on human tissue. The most prominent application of haptic technology is in consumer electronics.
The automotive industry is another sector leveraging haptic technology to improve safety and user experience. Touchscreen interfaces in modern vehicles use haptic feedback to provide tactile responses, allowing drivers to interact with controls without diverting their attention from the road. Advanced driver-assistance systems (ADAS) utilize haptic alerts, such as steering wheel or seat vibrations, to warn drivers of potential collisions or lane departures. Haptic technology is also making strides in prosthetics and assistive devices.
Advanced prosthetic limbs equipped with haptic sensors and actuators enable amputees to regain a sense of touch, allowing them to perceive pressure, temperature, and texture. It improves their ability to perform daily tasks and enhances their overall quality of life. While the benefits of haptic technology are vast, it also presents challenges. Developing precise and realistic haptic feedback systems requires advanced engineering, significant computational power, and energy-efficient components.