Be first to read the latest tech news, Industry Leader's Insights, and CIO interviews of medium and large enterprises exclusively from Applied Technology Review
Shaping Industry Innovation: The Future of Particle Measurement
The increasing demand for precise material characterization in nanoparticle and microparticle measuring equipment presents opportunities for innovation in various industries, necessitating advanced data analytics, miniaturization, and real-time monitoring capabilities.
By
Applied Technology Review | Monday, August 11, 2025
Stay ahead of the industry with exclusive feature stories on
the top companies, expert insights and the latest news delivered straight to your
inbox. Subscribe today.
The demand for precise material characterization drives the growth of nanoparticle and microparticle measuring equipment in various industries. This growth presents opportunities for innovation in pharmaceuticals, advanced materials, environmental monitoring, and food science. Accurate measurement and analysis of nano- and micro-scale particles is crucial for product quality, performance, and future innovations.
Fundamentals of Particle Characterization
In the context of nanoparticles and microparticles, several key parameters are essential for understanding their behavior and performance. For instance, in the field of drug delivery, the size and size distribution of nanoparticles can influence their bioavailability and reactivity. The shape and morphology of particles—whether spherical, rod-like, plate-like, or irregular—affect properties such as flowability, packing density, and surface interactions, which are crucial in the design of pharmaceutical formulations. Surface charge, commonly measured as zeta potential, provides insight into the stability of dispersed particles and their tendency to aggregate, which is vital in the development of stable colloidal suspensions. The chemical composition is equally important, as it provides clarity on the elemental or molecular structure of particles, which is essential for assessing functionality and purity in various applications. Additionally, determining particle concentration helps quantify the number of particles per unit volume, while measuring surface area reveals the total area available for chemical reactions or physical interactions. Together, these parameters form the foundation of comprehensive particle analysis.
Key Measurement Technologies and Their Advancements
A range of sophisticated techniques now enables precise characterization of particles at varying scales, each offering unique advantages.
Nanoparticle Tracking Analysis (NTA) provides a complementary approach, offering real-time visualization and tracking of individual nanoparticles. It calculates hydrodynamic size and concentration on a particle-by-particle basis. Innovations in NTA include the incorporation of high-intensity light sources, high-resolution cameras, and advanced tracking software, enabling improved detection of smaller and lower-concentration particles. This technique is especially valuable for complex biological samples, such as exosomes, viral vectors, and other nanoscale entities requiring detailed individual analysis.
Laser Diffraction (LD) is widely used for sizing particles ranging from sub-microns to millimeters. It determines particle size based on the angle and intensity of light scattered by particles in suspension or dry form. Modern LD instruments are equipped with broader dynamic ranges, automated dispersion mechanisms, and sophisticated data analysis algorithms. The integration of AI and machine learning is further enhancing the accuracy of interpretation, especially in complex or polydisperse samples. These technologies are beneficial in handling the large volumes of data generated by LD, improving the accuracy and speed of particle size analysis.
Imaging techniques, such as Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM), provide direct, high-resolution visualization of particle morphology, size, and surface characteristics. Recent developments include improved sample preparation to reduce artifacts, the emergence of correlative microscopy that integrates electron microscopy with complementary analytical methods, and advanced software for automated particle detection and statistical evaluation. Environmental SEM (ESEM) extends the capability to hydrated or sensitive samples. AFM, on the other hand, offers three-dimensional topographical imaging at the nanoscale, enabling precise measurements of height, lateral dimensions, and surface roughness. Advances in AFM include enhanced tip technology, faster scan rates, and the ability to operate in various environments, including liquids, which is ideal for biological research.
Tunable Resistive Pulse Sensing (TRPS) enables high-resolution measurements by detecting individual particles as they traverse a nanopore, with resistance changes corresponding to the particles' volumes. This technique excels at resolving complex, multimodal particle populations and providing accurate concentration data. Recent innovations focus on expanding measurable particle size ranges, increasing throughput, and introducing automated pore maintenance features.
Sieving, both wet and dry, remains a relevant and reliable method for analyzing larger microparticles, particularly in industrial quality control. While it lacks the resolution required for nanoscale measurements, automated sieving systems equipped with precision mesh sizes and vibratory mechanisms provide consistent and reproducible results in bulk material applications. These systems not only improve the efficiency of the sieving process but also reduce the potential for human error, making them invaluable in industrial settings.
Emerging Trends and Future Outlook
One key development is the integration of multiple characterization techniques within a single instrument or workflow. This integration provides a more comprehensive and accurate understanding of particle properties. This advancement enlightens researchers, enhancing their knowledge and understanding of particle behavior.
Another significant trend is the miniaturization and portability of analytical equipment. Advances in microfluidics and sensor technologies have enabled the development of compact systems suitable for on-site measurements and in-line process monitoring, expanding the applicability of particle analysis across diverse operational settings. Moreover, the integration of advanced data analytics, including artificial intelligence (AI) and machine learning, is redefining the way data is interpreted. These tools are not only enhancing the accuracy of data analysis but also inspiring a new era of predictive modeling and optimization of experimental parameters, exciting the audience about the future of particle analysis.
Real-time and in-line monitoring capabilities are also gaining traction, particularly in industrial manufacturing contexts. Such systems provide immediate feedback and facilitate real-time adjustments, leading to improved process control, reduced material waste, and enhanced product quality. Furthermore, there is a growing focus on environmental and biological applications, such as the detection of microplastics and the characterization of drug delivery systems or viral particles. These complex samples require the development of specialized instruments and tailored methodologies, which in turn can lead to significant advancements in environmental protection, healthcare, and pharmaceutical research.
The continued innovation in nanoparticle and microparticle measuring equipment is crucial for scientific discovery and industrial advancement. As the understanding and manipulation of materials at the nanoscale and microscale continue to expand, the demand for more precise, efficient, and versatile characterization tools will only intensify.