JAN - MAR 20199 where information is shared most efficiently using a large display format. In group settings, these displays can enhance teamwork and collaboration. When embedded with sensors, foldable displays resembling blueprints can help firefighters map emergency situations in real time to support fire-and-rescue efforts.NEW LEVELS OF DESIGN FREEDOMOngoing advancements in flexible, foldable, soft, multi-materials-based structures are impacting every aspect of product lifecycles, from design and supply chain to manufacturing, assembly, and delivery. Product designers not only must be familiar with evolving materials but also their respective mechanical, electrical, optical and thermal properties. This requires an understanding of the implications on global supply chains while ensuring proper materials can be sourced at the right prices, in desired quantities, and shipped to appropriate manufacturing locations.Product designers must take much more into account when designing foldable, flexible displays. On one hand, they have more freedom to solve different problems as flexible displays inherently provide greater user functionality. On the other hand, working with flexible display technology can be complicated, requiring special expertise to circumvent integration challenges and ensures seamless integration between display and device.In some cases, flexible displays can be used as the housing for the device. This adds a new level of manufacturing complexity. Product designers then cannot rely on traditional manufacturing solutions, such as injection molding, to create the housing. Once the display is no longer just a display, it has to provide mechanical strength in addition to flexibility. It's critical to understand the limitations of "display as the housing" applications, as they must be addressed prior to manufacturing, final product assembly and testing. CONVERGENCE OF DESIGN, MATERIALS AND MANUFACTURING INNOVATIONAs flexible display technology continues to evolve, product designers, soft materials scientists and engineers, supply chain experts and manufacturing engineers will team to transform the development and delivery of groundbreaking products. They'll overcome obstacles by ensuring that high-quality, bendable materials also possess the high degrees of fracture toughness required to resist cracking or breaking. Additionally, optimal optical properties must be sought for the highest resolutions while ensuring high-strength of adhesion between each functional layer of the display.From a manufacturing standpoint, precision alignment plays a pivotal role, which is why automation is critical. When assembling the functional layers of flexible displays, it's crucial to understand the difficulties of transitioning from the handling of rigid materials to working with flexible, stretchable soft materials that can deform along millions of axial orientations. Automation requirements will increase to minimize manual handling and the use of advanced soft robotic arms to compensate for deformation without scratching or fracturing the glass will be critical for high production yields.Manufacturers uniquely positioned to optimize the opportunities provided by flexible displays hail from a cross-section of industries, including aerospace, automotive, consumer products, medical devices and telecommunications. While these sectors have been among the first to use advanced soft materials for non-display products, the growing list of new product opportunities enabled by flexible displays is proof positive that when it comes to advanced display technology, the future is flexible and soft. Capitalizing on evolving applications for dynamic, flexible display technology requires advanced soft materials science& engineering, integrated product design, and manufacturing innovation
<
Page 8 |
Page 10 >